Study-Machine Learning/Deep Learning에 해당하는 글 10

3.DNN : DeepNeauralNetwork with keras

DNN : DeepNeauralNetwork


준비과정

import keras
from keras import layers, models
D:\ProgramData\Anaconda3\envs\tensorflow-gpu\lib\site-packages\h5py\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
  from ._conv import register_converters as _register_converters
Using TensorFlow backend.
import numpy as np
from keras import datasets
from keras.utils import np_utils
from kerasapp.skeras import plot_loss, plot_acc
(x_train, y_train), (x_test, y_test) = datasets.mnist.load_data()
Y_train = np_utils.to_categorical(y_train)
Y_test = np_utils.to_categorical(y_test)
L,W,H = x_train.shape
X_train = x_train.reshape(-1, W*H)
X_test = x_test.reshape(-1, W*H)
X_train = X_train / 255.0
X_test = X_test / 255.0

이번엔 조금 더 깊은 학습을 해봅시다.

준비과정은 ANN과 동일합니다.

신경망

Nin = 784
Nh_l = [100, 50]
number_of_class = 10
Nout = number_of_class

깊은 학습을 위한 신경 디자인 입니다.

ANN과 달리 히든레이어를 여러개 사용합니다.(저의 경우엔 ANN에서도 히든레이어를 2개 사용했었습니다. 2개면 어떻게 되나 궁금했엇는데... 뒤에서 나오네요.ㅋㅋ)

input_layer = layers.Input(shape=(Nin,), name="input")
relu = layers.Activation('relu')
h1 = layers.Dropout(0.2)(relu(layers.Dense(Nh_l[0])(input_layer)))
h2 = relu(layers.Dense(Nh_l[1])(h1))
out = layers.Activation('softmax')(layers.Dense(Nout)(h2))
model = models.Model(input_layer, out)

중간에 있는 Dropout은 DNN에서 말한 "오버피팅"을 방지하기 위한 방법론 입니다.

학습할 때, 랜덤하게 일정수치(여기서는 0.2)의 노드를 제거하고 학습합니다.

일정 노드를 랜덤하게 없이 학습과 평가를 위해서는 원래는 복잡한 식이 필요하지만, Keras에선 자동으로 해줍니다.

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

모델 컴파일을 조금 더 자세히 봅시다.

loss

loss는 답과 예측값 사이 오차를 계산하는 모델을 지정합니다. 이 경우엔, Categorical_crossentropy를 사용했습니다.

y : 실제값 (0 or 1) / y^ : 예측값 (확률) 일 때, Σylogy^ 입니다.

낮은 확률로 예측하였지만 맞추거나, 높은 확률로 예측하였지만 틀리는 경우 loss가 더 큽니다.

범주형 변수를 예측할 때 사용합니다.

optimizer

optimizer는 오차를 0에 가깝게 진행하기 위한 함수입니다. 다양한 optimizer가 있으며, 대부분 경사하강법에 기반합니다.

경사하강법이란, weight를 바꾸었을 때, 변하는 loss값의 경사를 연산하여, 경사도에 비례하는 만큼씩 weight를 바꾸어주는 방법입니다.

이를 통해, 경사도가 클 때(아마도, loss값이 크며, loss값이 최소화 되는 지점이 먼 경우)에는 많은 수치의 weight변화를 통해 학습의 속도를 빠르게 해주고,

경사도가 작을 때(아마도, loss값이 작으며, 최소화 되는 지점이 가까울 경우)에는 작은 수치의weight변화를 주어서, 최저점을 지나쳐 버려서 학습 효율을 낮추는 일을 줄여줍니다.

history = model.fit(X_train, Y_train, epochs=13, batch_size=100, validation_split=0.2)
Train on 48000 samples, validate on 12000 samples
Epoch 1/13
48000/48000 [==============================] - 3s 64us/step - loss: 0.4499 - acc: 0.8683 - val_loss: 0.1860 - val_acc: 0.9473
Epoch 2/13
48000/48000 [==============================] - 2s 37us/step - loss: 0.2016 - acc: 0.9399 - val_loss: 0.1397 - val_acc: 0.9582
Epoch 3/13
48000/48000 [==============================] - 2s 37us/step - loss: 0.1489 - acc: 0.9554 - val_loss: 0.1133 - val_acc: 0.9656
Epoch 4/13
48000/48000 [==============================] - 2s 39us/step - loss: 0.1220 - acc: 0.9631 - val_loss: 0.1028 - val_acc: 0.9681
Epoch 5/13
48000/48000 [==============================] - 2s 37us/step - loss: 0.1051 - acc: 0.9677 - val_loss: 0.0993 - val_acc: 0.9703
Epoch 6/13
48000/48000 [==============================] - 2s 37us/step - loss: 0.0927 - acc: 0.9707 - val_loss: 0.0917 - val_acc: 0.9718
Epoch 7/13
48000/48000 [==============================] - 2s 40us/step - loss: 0.0811 - acc: 0.9747 - val_loss: 0.0849 - val_acc: 0.9743
Epoch 8/13
48000/48000 [==============================] - 2s 43us/step - loss: 0.0750 - acc: 0.9761 - val_loss: 0.0870 - val_acc: 0.9728
Epoch 9/13
48000/48000 [==============================] - 2s 42us/step - loss: 0.0692 - acc: 0.9780 - val_loss: 0.0903 - val_acc: 0.9737
Epoch 10/13
48000/48000 [==============================] - 2s 46us/step - loss: 0.0617 - acc: 0.9803 - val_loss: 0.0810 - val_acc: 0.9758
Epoch 11/13
48000/48000 [==============================] - 2s 41us/step - loss: 0.0593 - acc: 0.9805 - val_loss: 0.0857 - val_acc: 0.9742
Epoch 12/13
48000/48000 [==============================] - 2s 39us/step - loss: 0.0547 - acc: 0.9817 - val_loss: 0.0807 - val_acc: 0.9759
Epoch 13/13
48000/48000 [==============================] - 2s 46us/step - loss: 0.0495 - acc: 0.9834 - val_loss: 0.0837 - val_acc: 0.9757
performance_test = model.evaluate(X_test, Y_test, batch_size=100)
10000/10000 [==============================] - 0s 21us/step
plot_loss(history)

png

plot_acc(history)

png

각, 이전 simple_ann 에서의 결과와 비교해보면, 오버피팅이 사라진것을 확인 가능합니다.

하지만, accuracy는 떨어질수도 있다. Dropout을 사용할 경우, hidden레이어 에서 해당 갯수만큼의 노드가 적은것과 동일하기 때문입니다.


CIFAR-10의 경우

CIFAR-10은 Mnist와 달리 컬러로 된, 사물 데이터셋 입니다.

작성한 모델이 조금 더 복잡한 환경인 CIFAR-10에서도 잘 작동하는지 알아봅시다.

def data_func():
    (x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()

    Y_test = np_utils.to_categorical(y_test)
    Y_train = np_utils.to_categorical(y_train)

    L,W,H,C = x_train.shape

    X_test = x_test.reshape(-1, W*H*C)
    X_train = x_train.reshape(-1, W*H*C)

    X_test = X_test/255.0
    X_train = X_train/255.0

    return (X_train, Y_train), (X_test, Y_test), (x_train, x_test, y_test)
(xtrain, ytrain), (xtest, ytest), (train_img, test_img, y_test) = data_func()

준비과정은 Mnist와 동일합니다. 하지만, reshape를 통해 직렬화를 할 때, Color 때문에 W*H가 아닌, W*H*C를 하는점을 조심해야 합니다.

Nin = xtrain.shape[1]
Nh_l = [100, 50]
Pd_l = [0.05, 0.05]
number_of_class = 10
Nout = number_of_class
relu = layers.Activation('relu')
softmax = layers.Activation('softmax')
dr1 = layers.Dropout(Pd_l[0])
dr2 = layers.Dropout(Pd_l[1])
inL = layers.Input(shape=(Nin, ))
h1L = dr1(relu(layers.Dense(Nh_l[0])(inL)))
h2L = dr2(relu(layers.Dense(Nh_l[1])(h1L)))
out = softmax(layers.Dense(Nout)(h2L))
model = models.Model(inL, out)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

모델을 만드는 과정 또한 동일합니다.

history = model.fit(xtrain, ytrain, batch_size=100, epochs=100, validation_split=0.2)
Train on 40000 samples, validate on 10000 samples
Epoch 1/100
40000/40000 [==============================] - 3s 75us/step - loss: 1.9569 - acc: 0.2866 - val_loss: 1.8067 - val_acc: 0.3502
Epoch 2/100
40000/40000 [==============================] - 3s 66us/step - loss: 1.8070 - acc: 0.3457 - val_loss: 1.7278 - val_acc: 0.3784
Epoch 3/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.7516 - acc: 0.3686 - val_loss: 1.7004 - val_acc: 0.3935
Epoch 4/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.7168 - acc: 0.3828 - val_loss: 1.6625 - val_acc: 0.4058
Epoch 5/100
40000/40000 [==============================] - 3s 70us/step - loss: 1.6837 - acc: 0.3940 - val_loss: 1.6555 - val_acc: 0.4095
Epoch 6/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.6664 - acc: 0.3968 - val_loss: 1.6540 - val_acc: 0.4102
Epoch 7/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.6398 - acc: 0.4081 - val_loss: 1.6116 - val_acc: 0.4230
Epoch 8/100
40000/40000 [==============================] - 3s 65us/step - loss: 1.6350 - acc: 0.4114 - val_loss: 1.6049 - val_acc: 0.4256
Epoch 9/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.6113 - acc: 0.4169 - val_loss: 1.6301 - val_acc: 0.4110
Epoch 10/100
40000/40000 [==============================] - 3s 66us/step - loss: 1.6014 - acc: 0.4220 - val_loss: 1.5704 - val_acc: 0.4345
Epoch 11/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.5886 - acc: 0.4280 - val_loss: 1.6179 - val_acc: 0.4144
Epoch 12/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.5821 - acc: 0.4325 - val_loss: 1.5735 - val_acc: 0.4380
Epoch 13/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.5751 - acc: 0.4330 - val_loss: 1.5953 - val_acc: 0.4308
Epoch 14/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.5683 - acc: 0.4354 - val_loss: 1.5569 - val_acc: 0.4407
Epoch 15/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.5604 - acc: 0.4373 - val_loss: 1.5721 - val_acc: 0.4364
Epoch 16/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.5468 - acc: 0.4437 - val_loss: 1.5405 - val_acc: 0.4468
Epoch 17/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.5446 - acc: 0.4455 - val_loss: 1.5708 - val_acc: 0.4385
Epoch 18/100
40000/40000 [==============================] - 3s 65us/step - loss: 1.5405 - acc: 0.4468 - val_loss: 1.5701 - val_acc: 0.4417
Epoch 19/100
40000/40000 [==============================] - 3s 66us/step - loss: 1.5262 - acc: 0.4522 - val_loss: 1.5721 - val_acc: 0.4389
Epoch 20/100
40000/40000 [==============================] - 3s 66us/step - loss: 1.5228 - acc: 0.4550 - val_loss: 1.5420 - val_acc: 0.4525
Epoch 21/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.5187 - acc: 0.4548 - val_loss: 1.5655 - val_acc: 0.4418
Epoch 22/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.5165 - acc: 0.4571 - val_loss: 1.5409 - val_acc: 0.4474
Epoch 23/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.5119 - acc: 0.4573 - val_loss: 1.5373 - val_acc: 0.4540
Epoch 24/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.5096 - acc: 0.4581 - val_loss: 1.5552 - val_acc: 0.4415
Epoch 25/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.5138 - acc: 0.4579 - val_loss: 1.5297 - val_acc: 0.4560
Epoch 26/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.5011 - acc: 0.4609 - val_loss: 1.5425 - val_acc: 0.4456
Epoch 27/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.4935 - acc: 0.4655 - val_loss: 1.5409 - val_acc: 0.4492
Epoch 28/100
40000/40000 [==============================] - 3s 66us/step - loss: 1.4925 - acc: 0.4621 - val_loss: 1.5217 - val_acc: 0.4545
Epoch 29/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.4848 - acc: 0.4709 - val_loss: 1.5561 - val_acc: 0.4460
Epoch 30/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.4851 - acc: 0.4681 - val_loss: 1.5242 - val_acc: 0.4574
Epoch 31/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.4866 - acc: 0.4667 - val_loss: 1.5174 - val_acc: 0.4673
Epoch 32/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.4738 - acc: 0.4723 - val_loss: 1.5569 - val_acc: 0.4465
Epoch 33/100
40000/40000 [==============================] - 3s 66us/step - loss: 1.4767 - acc: 0.4745 - val_loss: 1.5505 - val_acc: 0.4531
Epoch 34/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.4673 - acc: 0.4732 - val_loss: 1.5260 - val_acc: 0.4563
Epoch 35/100
40000/40000 [==============================] - 3s 70us/step - loss: 1.4714 - acc: 0.4726 - val_loss: 1.5574 - val_acc: 0.4419
Epoch 36/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.4705 - acc: 0.4737 - val_loss: 1.5405 - val_acc: 0.4536
Epoch 37/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.4653 - acc: 0.4751 - val_loss: 1.5124 - val_acc: 0.4631
Epoch 38/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.4587 - acc: 0.4775 - val_loss: 1.5211 - val_acc: 0.4599
Epoch 39/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.4619 - acc: 0.4753 - val_loss: 1.5075 - val_acc: 0.4661
Epoch 40/100
40000/40000 [==============================] - 3s 72us/step - loss: 1.4569 - acc: 0.4768 - val_loss: 1.5203 - val_acc: 0.4604
Epoch 41/100
40000/40000 [==============================] - 3s 73us/step - loss: 1.4629 - acc: 0.4769 - val_loss: 1.5061 - val_acc: 0.4628
Epoch 42/100
40000/40000 [==============================] - 3s 71us/step - loss: 1.4513 - acc: 0.4812 - val_loss: 1.5040 - val_acc: 0.4694
Epoch 43/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.4506 - acc: 0.4802 - val_loss: 1.5134 - val_acc: 0.4659
Epoch 44/100
40000/40000 [==============================] - 3s 66us/step - loss: 1.4514 - acc: 0.4784 - val_loss: 1.5393 - val_acc: 0.4566
Epoch 45/100
40000/40000 [==============================] - 3s 66us/step - loss: 1.4457 - acc: 0.4822 - val_loss: 1.5057 - val_acc: 0.4629
Epoch 46/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.4405 - acc: 0.4838 - val_loss: 1.5054 - val_acc: 0.4639
Epoch 47/100
40000/40000 [==============================] - 3s 71us/step - loss: 1.4463 - acc: 0.4804 - val_loss: 1.5158 - val_acc: 0.4641
Epoch 48/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.4408 - acc: 0.4851 - val_loss: 1.5117 - val_acc: 0.4624
Epoch 49/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.4428 - acc: 0.4853 - val_loss: 1.5351 - val_acc: 0.4541
Epoch 50/100
40000/40000 [==============================] - 3s 66us/step - loss: 1.4343 - acc: 0.4871 - val_loss: 1.5058 - val_acc: 0.4608
Epoch 51/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.4349 - acc: 0.4872 - val_loss: 1.5114 - val_acc: 0.4614
Epoch 52/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.4346 - acc: 0.4871 - val_loss: 1.4952 - val_acc: 0.4667
Epoch 53/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.4337 - acc: 0.4865 - val_loss: 1.5165 - val_acc: 0.4613
Epoch 54/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.4341 - acc: 0.4880 - val_loss: 1.5241 - val_acc: 0.4567
Epoch 55/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.4217 - acc: 0.4892 - val_loss: 1.4899 - val_acc: 0.4709
Epoch 56/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.4253 - acc: 0.4874 - val_loss: 1.5219 - val_acc: 0.4608
Epoch 57/100
40000/40000 [==============================] - 3s 71us/step - loss: 1.4268 - acc: 0.4899 - val_loss: 1.5230 - val_acc: 0.4575
Epoch 58/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.4270 - acc: 0.4904 - val_loss: 1.5035 - val_acc: 0.4653
Epoch 59/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.4234 - acc: 0.4910 - val_loss: 1.5056 - val_acc: 0.4607
Epoch 60/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.4210 - acc: 0.4915 - val_loss: 1.4967 - val_acc: 0.4690
Epoch 61/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.4154 - acc: 0.4939 - val_loss: 1.5029 - val_acc: 0.4669
Epoch 62/100
40000/40000 [==============================] - 3s 66us/step - loss: 1.4145 - acc: 0.4933 - val_loss: 1.5200 - val_acc: 0.4608
Epoch 63/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.4131 - acc: 0.4945 - val_loss: 1.5127 - val_acc: 0.4696
Epoch 64/100
40000/40000 [==============================] - 3s 71us/step - loss: 1.4185 - acc: 0.4909 - val_loss: 1.5104 - val_acc: 0.4662
Epoch 65/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.4103 - acc: 0.4981 - val_loss: 1.5006 - val_acc: 0.4673
Epoch 66/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.4105 - acc: 0.4955 - val_loss: 1.5310 - val_acc: 0.4561
Epoch 67/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.4149 - acc: 0.4952 - val_loss: 1.5092 - val_acc: 0.4643
Epoch 68/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.4098 - acc: 0.4960 - val_loss: 1.4945 - val_acc: 0.4737
Epoch 69/100
40000/40000 [==============================] - 3s 71us/step - loss: 1.4055 - acc: 0.4993 - val_loss: 1.5174 - val_acc: 0.4634
Epoch 70/100
40000/40000 [==============================] - 3s 70us/step - loss: 1.4025 - acc: 0.4982 - val_loss: 1.4925 - val_acc: 0.4763
Epoch 71/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.3996 - acc: 0.4974 - val_loss: 1.5388 - val_acc: 0.4535
Epoch 72/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.4079 - acc: 0.4952 - val_loss: 1.5062 - val_acc: 0.4635
Epoch 73/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.4014 - acc: 0.4972 - val_loss: 1.4883 - val_acc: 0.4706
Epoch 74/100
40000/40000 [==============================] - 3s 70us/step - loss: 1.4044 - acc: 0.4973 - val_loss: 1.5154 - val_acc: 0.4663
Epoch 75/100
40000/40000 [==============================] - 3s 70us/step - loss: 1.3977 - acc: 0.4970 - val_loss: 1.5024 - val_acc: 0.4688
Epoch 76/100
40000/40000 [==============================] - 3s 72us/step - loss: 1.3975 - acc: 0.4982 - val_loss: 1.5073 - val_acc: 0.4688
Epoch 77/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.3991 - acc: 0.5003 - val_loss: 1.5009 - val_acc: 0.4729
Epoch 78/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.3930 - acc: 0.5024 - val_loss: 1.5364 - val_acc: 0.4571
Epoch 79/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.3996 - acc: 0.4978 - val_loss: 1.5063 - val_acc: 0.4676
Epoch 80/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.3989 - acc: 0.4996 - val_loss: 1.5309 - val_acc: 0.4607
Epoch 81/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.3932 - acc: 0.4987 - val_loss: 1.5090 - val_acc: 0.4694
Epoch 82/100
40000/40000 [==============================] - 3s 72us/step - loss: 1.3934 - acc: 0.5037 - val_loss: 1.5350 - val_acc: 0.4526
Epoch 83/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.3913 - acc: 0.5014 - val_loss: 1.4890 - val_acc: 0.4741
Epoch 84/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.3924 - acc: 0.5013 - val_loss: 1.5055 - val_acc: 0.4670
Epoch 85/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.3950 - acc: 0.5005 - val_loss: 1.5062 - val_acc: 0.4679
Epoch 86/100
40000/40000 [==============================] - 3s 70us/step - loss: 1.3868 - acc: 0.5027 - val_loss: 1.5121 - val_acc: 0.4601
Epoch 87/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.3893 - acc: 0.5049 - val_loss: 1.5144 - val_acc: 0.4663
Epoch 88/100
40000/40000 [==============================] - 3s 71us/step - loss: 1.3843 - acc: 0.5053 - val_loss: 1.4946 - val_acc: 0.4730
Epoch 89/100
40000/40000 [==============================] - 3s 70us/step - loss: 1.3897 - acc: 0.5045 - val_loss: 1.5206 - val_acc: 0.4595
Epoch 90/100
40000/40000 [==============================] - 3s 71us/step - loss: 1.3831 - acc: 0.5060 - val_loss: 1.4991 - val_acc: 0.4732
Epoch 91/100
40000/40000 [==============================] - 3s 74us/step - loss: 1.3855 - acc: 0.5037 - val_loss: 1.4980 - val_acc: 0.4692
Epoch 92/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.3780 - acc: 0.5103 - val_loss: 1.5006 - val_acc: 0.4703
Epoch 93/100
40000/40000 [==============================] - 3s 70us/step - loss: 1.3770 - acc: 0.5073 - val_loss: 1.5142 - val_acc: 0.4653
Epoch 94/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.3791 - acc: 0.5085 - val_loss: 1.5275 - val_acc: 0.4576
Epoch 95/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.3827 - acc: 0.5050 - val_loss: 1.5300 - val_acc: 0.4603
Epoch 96/100
40000/40000 [==============================] - 3s 66us/step - loss: 1.3837 - acc: 0.5053 - val_loss: 1.5323 - val_acc: 0.4589
Epoch 97/100
40000/40000 [==============================] - 3s 68us/step - loss: 1.3781 - acc: 0.5073 - val_loss: 1.5420 - val_acc: 0.4565
Epoch 98/100
40000/40000 [==============================] - 3s 69us/step - loss: 1.3827 - acc: 0.5026 - val_loss: 1.4939 - val_acc: 0.4739
Epoch 99/100
40000/40000 [==============================] - 3s 71us/step - loss: 1.3707 - acc: 0.5130 - val_loss: 1.5076 - val_acc: 0.4693
Epoch 100/100
40000/40000 [==============================] - 3s 67us/step - loss: 1.3773 - acc: 0.5098 - val_loss: 1.5128 - val_acc: 0.4634
model.evaluate(xtest, ytest, batch_size=100)
10000/10000 [==============================] - 0s 35us/step





[1.5006141018867494, 0.4617999964952469]
plot_acc(history)

png

plot_loss(history)

png

Color 데이터셋의 경우 accuracy가 낮길래, 100번 epoch를 돌려보았습니다.

어느 경우 맞추고, 못맞추는지 확인해 봅시다.

y_test
array([[3],
       [8],
       [8],
       ...,
       [5],
       [1],
       [7]])
label= ["airlane",'automobile','bird','cat','deer','dog','frog','horse','ship','truck']
import matplotlib.pyplot as plt
a = 351
plt.imshow(test_img[a])
c = model.predict(xtest[a:a+1])
print("predict: ",label[c.tolist()[0].index(c.max())])

print("answer: ",label[y_test[a][0]])
predict:  automobile
answer:  automobile

png

정답을 맞추고 있습니다.

a = 35
plt.imshow(test_img[a])
c = model.predict(xtest[a:a+1])
print("predict: ",label[c.tolist()[0].index(c.max())])

print("answer: ",label[y_test[a][0]])
predict:  automobile
answer:  bird

png

cifar-10의 경우 Mnist와 달리, 명확해 보이는 경우에도 못맞추는 경우가 많습니다.

실제, 위의 Accuracy그래프 에서도 50%정도의 적중율만 보여줍니다.

A = []
P = []
ANS = []
for a in range(0, 10000):
    c = model.predict(xtest[a:a+1])
    pre = c.tolist()[0].index(c.max())
    ans = y_test[a]

    if(pre != ans):
        A.append(a)
        P.append(pre)
        ANS.append(ans)
        #print("index: ", a)
        #print("predict: ", pre)
        #print("answer: ", ans)
w = 10
h = 23
fig=plt.figure(figsize=(30, 30))

for j in range(0,230):
    fig.add_subplot(w,h,j+1)
    plt.title(label[P[j]]+":"+label[ANS[j][0]])
    plt.imshow(test_img[A[j]])

png

댓글()